Custo Total de Propriedade aplicado ao Centro de Documentação Histórica da Universidade Severino Sombra: Um estudo de caso

Kayo Delgado Medeiros de Almeida¹, José Augusto Teixeira de Lima Júnior²

¹Universidade Severino Sombra, Centro de Ciências Exatas e Tecnológicas e da Natureza, Curso de Sistemas de Informação, kayodelgado@gmail.com

²Universidade Severino Sombra, Centro de Ciências Exatas e Tecnológicas e da Natureza, Curso de Sistemas de Informação e Coordenadoria de Informática e Telecomunicações, jaugusto.junior@uol.com.br

Resumo. Este artigo visa mostrar uma pequena realidade da prática de análise de custo total de propriedade através de um estudo de caso e discussão de resultados. O mesmo também propõe soluções moldadas de acordo com a necessidade aparente do problema em evidência. Mostra o quão importante é ter o controle dos custos de TI e seus adjacentes e quão poderosa pode ser a ferramenta TCO, mesmo que direcionada a pequenas estruturas operacionais.

Palavras-chave: Tecnologia da Informação, Gestão de Tecnologia, Custo Total de Propriedade, Sistemas de Informação.

1.Introdução

O Centro de Documentação Histórica (CDH) é um setor da Universidade Severino Sombra (USS), ambos localizados na cidade de Vassouras-RJ. Responsável por guardar e disponibilizar acesso à documentação histórica, o centro possui convênio com o Tribunal de Justiça do Estado do Rio de Janeiro (TJERJ) e a Paróquia Nossa Senhora Conceição Vassouras (PNSCV).

Os convênios acordam com a guarda documental histórica a partir do século XIX. A preservação do material é o ponto principal.

Em 2007 surgiu a oportunidade de submeter um projeto em um edital da FAPERJ (Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro).

O projeto intitulado "O Vale do Café no pós-escravidão e a Questão do Negro: sociedade, trabalho e cultura, fins do séc. XIX a princípios do séc. XX", foi desenvolvido pelo Prof. Dr. José Jorge Siqueira, no âmbito do Programa de Mestrado em História (PPHIS-USS), da Universidade Severino Sombra (USS), como parte das atividades do Laboratório Gênero e Escravidão, coordenado pela Prof^a. Dra. Miridan Britto Knox Falci, em parceria firmada com o Centro de Documentação Histórica (CDH) e o Curso de Sistema de Informação.

O projeto aborda diversas questões sociais de preservação da memória. Um dos pontos abordados e o qual qualifica este artigo para tratar de TCO (Custo Total de Propriedade ou *Total Cost of Ownership*), é a parte tecnológica. A Tecnologia da Informação (TI) é aplicada com o intuito de prover um ambiente para a produção de um sistema de consulta e visualização de documentos históricos, além da digitalização dos mesmos.

A criação e aprovação deste projeto no edital da FAPERJ possibilitou o desenvolvimento deste artigo.

Este artigo está dividido como se segue: a Seção 2 aborda a definição de TCO; a Seção 3 aborda o estudo da realidade do CDH e suas críticas; a Seção 4 expõe propostas de solução mediante ao cenário criticado na Seção 3; a Seção 5 traz as considerações finais; e por último na Seção 6 encontra-se as referências bibliográficas.

2.TCO – Total Cost of Ownership

O custo total de propriedade ou simplesmente TCO, tem se tornado evidente a cada dia que passa. Mas o que significa esse termo e por quê tem se tornado importante nas empresas?

TCO é uma metodologia/ferramenta desenvolvida pela Gartner Group que propõe o levantamento de todos os custos que giram em torno da TI como: *hardware*, *software* e *peopleware*¹.

Segundo Feiman (2009), analista do Gartner Group, o processo de estimativa de

¹ Pessoas que trabalham diretamente, ou indiretamente, com a área de TI.

custo começa com um alto nível de abstração para então descender através de alguns níveis mais baixos.

Para Gartner Group (1998), em seu *paper* intitulado de "*IT value is the Balance of competing business goals*", define de forma resumida e clara que TCO são os custos associados à tecnologia, implementação e administração.

A evolução da TI é tão dinâmica que quase não dava tempo para se planejar em seus primórdios. Mas hoje em dia, empresa que não planeja sua tecnologia está fadada ao insucesso.

Com o passar dos anos, os ativos de TI tomaram uma conotação de "o mal necessário", ou seja, um gasto que se tem e que não se espera retorno. Essa visão é de longe a mais errônea de todas. Imergir na era da tecnologia não é apenas comprar computadores para substituir máquinas de escrever.

Talvez o erro comece pela definição de TI. Pode-se defini-la como todas as ferramentas e métodos que tratem a informação em um todo, sua entrada, processamento e saída. A sociedade se encontra na era em que a informação é a moeda mais valiosa, portanto quanto melhor administrada, melhores serão os resultados da empresa que a detém.

A proposta de se levantar os custos é para que um estudo possa ser feito para minimizar gastos e desperdícios, aumentando assim o coeficiente de produção. Com esses dados é possível prever um retorno sobre o investimento em tecnologia. Retorno? Isso mesmo, ao contrário do que muitos pensam, TI é investimento e é possível calcular o ROI (*Return on Investiment*²).

Alguns pontos são de extrema importância quando se calcula o TCO:

- •Custos da análise e da definição das necessidades de poder computacional, para então especificar as soluções que podem ser exploradas;
- •Custos iniciais do hardware, conforme especificado;
- •Custos iniciais da implantação no ambiente de trabalho;

² Relação entre o dinheiro ganho ou perdido através de um investimento, e o montante de dinheiro investido.

- •Custos com treinamento e da familiarização dos funcionários com os novos equipamentos e *software*;
- •Custos futuros com atualização de *software*;
- •Custos de mais treinamentos e familiarização dos funcionários com a atualização do software;
- •Custos ocasionais com reparo ou substituição do sistema por desgaste normal ou por falhas em componentes;
- •Custos futuros com manutenção do sistema e da rede, incluindo gerenciamento de segurança e configuração, controle, *backup* ou outro tipo de proteção dos dados e técnicas de preservação.

Através desses itens é possível ter toda a perspectiva de custos e investimentos que deverão ser tomados em relação à TI nas empresas.

Segundo Marke (2000), TCO é um modelo que ajuda administradores de sistemas empresariais a administrar os custos diretos e indiretos incorridos na aquisição e uso de componentes de TI através do seu ciclo de vida.

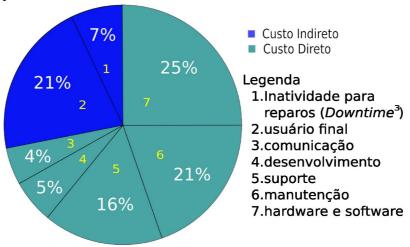


Figura 1 – áreas do TCO

Dentro do panorama das áreas de TCO (ver Figura 1), o presente estudo trata de

³ Tempo em que um recurso de TI fica parado por problemas técnicos ou manutenção preventiva.

custos diretos relacionados à aquisição de *hardware* e uma análise superficial relacionada a *software*.

1. Contextualização do Estudo

O presente artigo visa abordar o TCO referente apenas a infraestrutura física de *hardware* (microcomputadores), conectividade (estrutura de rede) e uma breve análise referente a *software*, previstos no projeto de pesquisa intitulado "O Vale do Café no pósescravidão e a Questão do Negro: sociedade, trabalho e cultura, fins do séc. XIX a princípios do séc. XX" desenvolvido no CDH da Universidade Severino Sombra.

A verba total disponibilizada para o projeto foi de R\$78.024,99, sem levar em consideração a implantação física da rede dos computadores e sua manutenção, além dos *softwares* a serem utilizados nos equipamentos, o que seria contrapartida da Universidade. Retirando a parte cabível ao que o artigo está tratando, a verba para aquisição dos equipamentos é de R\$ 29.429,59.

A ideia que abrange a parte de TI, referente ao projeto de iniciação científica, objetiva a criação de um laboratório de visualização com terminais burros⁴ e um laboratório de desenvolvimento para produzir as demandas listadas no projeto.

Partindo desses princípios, foram adquiridos equipamentos para alicerçar a infraestrutura de *hardware* conforme descritos na Tabela 1:

Tabela 1. Aquisição de equipamentos

N°	Descrição	Qtde.	Preço	Total
			Unit.	(R\$)
			(R\$)	
1	Processador Intel E4500 core 2 duo; 1GB RAM	5	991,00	4.955,00
	DDR2; 80GB HD SATA.			
2	Processador Intel E2140 core 2; 1GB RAM DDR2;	10	784,00	7.840,00
	80GB HD SATA.			

⁴ Equipamentos com recursos limitados, sem unidade de armazenamento. Funcionam como interface a um sistema de informação disponibilizado em servidores e sua conexão se dá através de rede.

3	Processador Athlon 64 x2 5000; 4GB RAM DDR2;	1	1.785,00	1.785,00
	2x 500GB HD SATA.			
4	Processador AMD Turion 2.2 GHz; 1GB RAM	2	2.459,00	4.918,00
	DDR2; 160GB HD SATA; Tela 14.1" widescreen;			
	DVD-RW; Placa de Vídeo Gforce 700m 128MB			
	dedicado; Modem 56k; Rede ethernet 10/100;			
	wireless 802.11 b/g; leitor de cartão; webcam 1.3mp;			
	linux.			
5	Monitor CRT 17"	5	330,00	1.650,00
6	Monitor LCD 15"	10	419,00	4.190,00
7	Monitor LCD 19"	1	580,00	580,00
8	Placa de rede wireless	16	60,00	960,00
9	Access Point	1	110,00	110,00
			TOTAL	26.988,00

Agora que se tem alguns dados relevantes, é de importância frisar que TCO avalia a necessidade para ter base para prover uma solução. Dadas as premissas pode-se definir pontos de análises em tópicos.

3.1 Hardware

3.1.1 Monitores

Note que foram comprados 11 monitores de LCD e 5 monitores de CRT. Quando avaliado o TCO em monitores, os fatores levados em consideração para este trabalho foram: custo/benefício, qualidade de imagem e o principal que é o consumo de energia (ver Tabela 1.1 e 1.2).

Tabela 1.1. Consumo dos monitores por unidade (Ligados em tempo integral).

Tipo	CRT 17"	LCD 15"	LCD 19"
Consumo médio por hora	75	25	35
(W)			
Horas de uso	8	8	8

Revista TECCEN — volume 3 – número 1 - abril de 2010 – ISSN 1984-0993

Tarifa + impostos (KW/h	0,66	0,66	0,66
R\$) - empresarial			
Consumo de 8h por dia	0,6	0,2	0,28
(KW/h)			
Gasto total diário (R\$)	0,4	0,13	0,18
Gasto total mensal – 22 dias	8,71	2,90	4,07
úteis (R\$)			

Tabela 1..2. Consumo dos monitores por unidade (Modo standby em tempo integral).

Tipo	CRT 17"	LCD 15"	LCD 19"
Consumo médio por hora	15	0,75	1
(W)			
Horas de uso	8	8	8
Tarifa + impostos (KW/h	0,66	0,66	0,66
R\$) - empresarial			
Consumo de 8h por dia	0,12	0,06	0,08
(KW/h)			
Gasto total diário (R\$)	0,08	0,04	0,05
Gasto total mensal – 22 dias	1,74	0,87	1,16
úteis (R\$)			

Monitores de CRT possuem o preço abaixo dos monitores de LCD, porém trás desconforto à vista do usuário e seu consumo de energia é em média 46% mais alto.

3.1.2 Servidor

Foi comprada a máquina descrita na Tabela 1 (item 3) para disponibilizar imagens ao sistema a ser desenvolvido para o projeto, através de uma estrutura de rede. Durante toda a arquitetura do projeto pensou-se na estrutura cliente-servidor, com *thin client*. É interessante focar que dado esses requisitos, o planejamento inicial para desenvolvimento do *software* foi baseado em *desktop*. Com estrutura de *thin client* é

possível replicar esse *software*, porém nenhuma das máquinas da Tabela 1 possui o perfil para servir.

Hoje o sistema é desenvolvido em arquitetura para *web*, exigindo muito menos da máquina, que atualmente comporta o volume de processamento do *software*, porém seu *hardware* não é ideal para esta função.

Processadores AMD Athlon dissipam mais calor em relação a outros processadores, todavia os mecanismos de resfriamento (*coolers*) adquiridos são os homologados pelo próprio fabricante compondo o BOX juntamente com o processador. O ponto vital é que para um servidor, fosse requisitado um processador com maior quantidade de memória cache e memória RAM. O fator expansibilidade não foi levado em consideração.

Não foi efetuada a compra de nenhum *nobreak* e o TCO também visa promover a integridade das informações e dos equipamento. É imensurável o valor que possa atingir com a perda de informações.

3.1.3 Notebooks

Os equipamentos adquiridos na Tabela 1 (item 4) são para atender pesquisas de campo onde a mobilidade é requisitada. Dentro das expectativas geradas pelo projeto, os *notebooks* se encaixam nos parâmetros satisfatórios, não sendo um custo que deva ser reavaliado.

3.1.4 Laboratório de Desenvolvimento

O projeto previu a construção de um laboratório de desenvolvimento, efetuando, assim, a compra dos equipamentos. (ver Tabela 1, item 1).

Para desenvolvimento na área de programação, os equipamentos satisfazem as necessidades. Porém a aquisição de monitores de CRT para esse laboratório põe em cheque o consumo de energia (ver Tabela 1.1 e 1.2) e a possibilidade de redução de produção por desconforto à vista. O bem estar de quem produz deve ser levado em consideração.

Para desenvolver o sistema proposto para o projeto apenas duas máquinas do porte comprado seriam necessárias (Processador de 800MHz e 512MB de RAM ou configuração superior). As outras produções elaboradas no laboratório são de complexidade mínima, podendo assim pensar em uma solução *thin client*.

3.1.5 Laboratório de Visualização

O ponto mais divergente deste artigo se encontra neste ponto. A utilização de *thin client* foi totalmente ignorada, comprando assim os equipamentos da Tabela 1 (item 2).

Das 10 máquinas, 8 são destinadas para o laboratório em si e 2 para administração do CDH. A necessidade de alocação de recursos dessas máquinas são menores do que o comprado. Os equipamentos do laboratório apenas necessitam executar o navegador *web* e as da administração necessitam somente de ferramentas de escritório além do navegador.

3.1.6 Rede

Por padrão as máquinas trazem placas de rede *onboard* 10/100 Mbits com capacidade de trafego de 10 Mbps. Por necessidade de colocar os computadores funcionando em menor tempo possível, foi adquirido os componentes da Tabela 1 (item 8 e 9) gerando um TCO em equipamentos de rede de R\$ 1.070,00.

Uma rede *wireless* tem como melhor característica prover mobilidade e um baixo custo de implantação física. Porém o projeto previu o tráfego de imagens pela rede e é o que de fato ocorre. Redes sem fio trafegam, na melhor hipótese, 5 Mbps, ou seja, metade do que se propõe a rede de 10/100 Mbits cabeada.

Além da velocidade ser baixa, uma rede sem fio sofre muitos ruídos provenientes das condições de ambiente. Portanto, uma rede cabeada é mais fidedigna e proporciona com maior certeza o tráfego em sua velocidade máxima em tempo integral.

3.2 *Software*

Os custos referentes aos softwares ficou de responsabilidade da instituição, como

contrapartida institucional.

Ao iniciar o projeto, um estudo de TCO focado em *software* foi realizado. Como fruto da análise das necessidades do CDH, foi feita a opção pela implantação de *software* livre. O Sistema Operacional adotado foi uma distribuição GNU/LINUX Ubuntu e o pacote *office* BrOffice 3.1. (Para essa análise foram considerados apenas Sistema Operacional e pacote *office*)

O Resultado foi imediato trazendo economia de R\$ 14.502,00 na época. [ALMEIDA et al 2008] Traçando o comparativo do TCO inicial dos equipamentos com a redução de TCO em aquisição e implantação de *software*, a economia gerada foi de 49,27% da verba gasta. (ver Tabela 2 e Gráfico 1)

Tabela 2. TCO obtido.

TCO	R\$	% em relação a verba
		disponibilizada
Inicial	29.429,59	100
Obtido (Real)	26.988,00	91,70
Previsto em software	14.502,00	49,27

50,00% 45,00% 40,00% 35,00% 25,00% 20,00% 15,00%

Gráfico 1. TCO inicial x TCO de software.

A economia gerada com a redução de TCO do *software* representa 53,73% do valor o TCO dos equipamentos comprados, que somam o total de R\$ 26.988,00. (ver Tabela 2 e Gráfico 2)

5,00% 0,00%

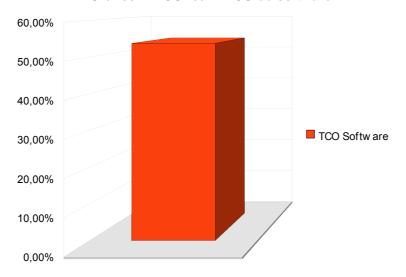


Gráfico 2. TCO real x TCO de software.

Podemos dizer que no ato da compra, houve uma redução de 8,3% representando o montante de R\$ 2.441,59. (ver Tabela 2 e Gráfico 3)

R\$ 30.000,00
R\$ 25.000,00
R\$ 20.000,00
R\$ 15.000,00
R\$ 10.000,00
R\$ 5.000,00
TCO

Gráfico 3. Relação de TCO x Economia.

4. Propostas de redução do TCO e seu reinvestimento

Dentro do que foi abordado será levantado e discutido propostas de redução de TCO e direcionamento da verba para reinvestimentos.

Pontuando as necessidades do CDH e tentando não fugir do escopo do projeto, é obtido a seguinte lista:

- •10 Thin Clients;
- •1 máquina para servir para os *Thin Clients*;
- •1 máquina para servir a aplicação e base de dados;
- •5 máquinas para desenvolvimento;
- •1 máquina storage para backup;
- •1 switch 24 portas;
- •15 monitores LCD 15".

A opção feita por *Thin Clients* é pelo fato de possuírem custos de aquisição menores que *Fat Clients*⁵. O valores de terminais burros no Brasil variam muito dependendo dos recursos que cada um possa agregar.

Para o levantamento de terminais burros foram levados em consideração o preço, compatibilidade com Linux, expansibilidade média de até 30 terminais, resolução de vídeo compatível com 1024x768 16bits e saída de áudio.

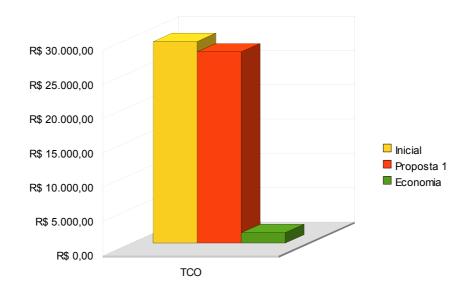
Será evidenciado duas propostas para estruturação do projeto. A seguir será apresentado um orçamento dos equipamentos previstos para suprir as necessidades previstas, caracterizando a proposta 1.

4.1 Proposta 1

Tabela 3. Orçamento dos equipamentos previstos, proposta 1.

N°	Descrição	Qtde.	Preço Unit.	Total (R\$)
			(R\$)	
1	Thin Client	10	480,00	4.800,00
2	Desktop – Desenvolvimento – Processador Intel	5	850,00	4.250,00
	Dual Core E5400, 2GB de memória RAM			
	DDR2 800MHz, disco rígido de 160GB,			
	Gravador de DVD, teclado, mouse PS2			
3	Notebook: Processador Intel® Core™2 Duo	2	2.199,00	4.398,00
	T6600 (2.2 GHz, 2 MB L2 cache, 800 MHz			
	FSB); Windows® 7 Home Basic Original 64-			
	bit em Português; Memória 3GB DDR2			
	800MHz (1x1GB + 1x2GB); Disco Rígido			
	SATA de 320GB (5400RPM); DVD +/- RW;			
	Webcam de 1.3 Mega Pixels; Bateria de 6			

⁵ Referência às máquinas *desktop* que possuem mais recursos traçando um antônimo ao termo *Thin Client*.


	células.			
4	Monitor LCD 15"	15	400,00	6.000,00
5	Switch 24 portas 10/100	1	390,00	390,00
6	Caixa de Cabo com 305 mt CAT5e	1	261,00	261,00
7	Kit - 200 conectores RJ45 + 50 capas	1	30,00	30,00
8	Nobreak 1300VA	3	399,00	1.197,00
9	Storage: Desktop para storage - Processador	1	1.500,00	1.500,00
	VIA C7 1.6GHz, 2GB de RAM, 4 discos			
	SATAII de 500GB (para utilização de RAID5			
	com 1 disco backup), fonte de potência real de			
	500W.			
10	Servidor p/ Thin Client: Processador Quad-Core	1	2.499,00	2.499,00
	Intel® Xeon® Processor X3220 (2.4GHz,			
	95W,1066FSB, 8MB); Memória Cache 8MB			
	L2 cache; Memoria 2GB (1x2GB)PC2-6400			
	ECC (DDR2-800Mhz) expansível até 8 GB;			
	Controladora de Rede NC105i PCIe Gigabit			
	Ethernet; 1 HD 250GB 7.2K SATA Non Hot			
	Plug 3,5" (expansível até 4 discos internos (1			
	TB)); Controladora para RAID (0, 1); DRIVE			
	SATA DVD-RW; Torre ATX (4U); Teclado e			
	Mouse inclusos; Garantia de 1 ano no local.			
11	Servidor p/ aplicação e dados: Processador	1	2.499,00	2.499,00
	Quad-Core Intel® Xeon® Processor X3220			
	(2.4GHz, 95W,1066FSB, 8MB); Memória			
	Cache 8MB L2 cache; Memoria 2GB			
	(1x2GB)PC2-6400 ECC (DDR2-800Mhz)			
	expansível até 8 GB; Controladora de Rede			
	NC105i PCIe Gigabit Ethernet; 1 HD 250GB			

Revista TECCEN — volume 3 – número 1 - abril de 2010 – ISSN 1984-0993

7.2K SATA Non Hot Plug 3,5" (expansível até		
4 discos internos (1 TB)); Controladora para		
RAID (0, 1); DRIVE SATA DVD-RW; Torre		
ATX (4U); Teclado e Mouse inclusos; Garantia		
de 1 ano no local.		
	TOTAL	27.924,00

O resultado final desse orçamento é de R\$ 27.924,00, o que representa 94,88% do valor disponível para a aquisição dos equipamentos em discussão. Isso significa que foi obtido a economia de R\$ 1.505,00, ou seja, 5,22%.

Gráfico 4. TCO inicial x TCO da proposta 1 x Economia.

4.2 Proposta 2

Esta segunda proposta visa dar rumo à equipamentos obsoletos que a instituição possui e que provavelmente viraria lixo. Uma das questões atuais no cenário de TI é o *Green IT* (TI Verde)⁶. Dentro desta ótica e as necessidades descritas na proposta 1, a proposta 2

⁶ TI verde é um conjunto de práticas para tornar mais sustentável e menos prejudicial o uso da computação.

tem uma base muito parecida.

Tabela 4. Orçamento dos equipamentos e reaproveitamento de equipamentos, proposta 2.

N°	Descrição	Qtde.	Preço Unit.	Total (R\$)
			(R\$)	
1	Thin Client	10	0*	0*
2	Desktop – Desenvolvimento – Processador Intel	5	850,00	4.250,00
	Dual Core E5400, 2GB de memória RAM			
	DDR2 800MHz, disco rígido de 160GB,			
	Gravador de DVD, teclado, mouse PS2			
3	Notebook: Processador Intel® Core™2 Duo	2	2.199,00	4.398,00
	T6600 (2.2 GHz, 2 MB L2 cache, 800 MHz			
	FSB); Windows® 7 Home Basic Original 64-			
	bit em Português; Memória 3GB DDR2			
	800MHz (1x1GB + 1x2GB); Disco Rígido			
	SATA de 320GB (5400RPM); DVD +/- RW;			
	Webcam de 1.3 Mega Pixels; Bateria de 6			
	células.			
4	Monitor LCD 15"	15	400,00	6.000,00
5	Switch 24 portas 10/100	1	390,00	390,00
6	Caixa de Cabo com 305 mt CAT5e	1	261,00	261,00
7	Kit - 200 conectores RJ45 + 50 capas	1	30,00	30,00
8	Nobreak 1300VA	3	399,00	1.197,00
9	Storage: Desktop para storage - Processador	1	1.500,00	1.500,00
	VIA C7 1.6GHz, 2GB de RAM, 4 discos			
	SATAII de 500GB (para utilização de RAID5			
	com 1 disco backup), fonte de potência real de			
	500W.			

10	Servidor p/ Thin Client: Processador Quad-Core	1	2.499,00	2.499,00
	Intel® Xeon® Processor X3220 (2.4GHz,			
	95W,1066FSB, 8MB); Memória Cache 8MB			
	L2 cache; Memoria 2GB (1x2GB)PC2-6400			
	ECC (DDR2-800Mhz) expansível até 8 GB;			
	Controladora de Rede NC105i PCIe Gigabit			
	Ethernet; 1 HD 250GB 7.2K SATA Non Hot			
	Plug 3,5" (expansível até 4 discos internos (1			
	TB)); Controladora para RAID (0, 1); DRIVE			
	SATA DVD-RW; Torre ATX (4U); Teclado e			
	Mouse inclusos; Garantia de 1 ano no local.			
11	Servidor p/ aplicação e dados: Processador	1	2.499,00	2.499,00
	Quad-Core Intel® Xeon® Processor X3220			
	(2.4GHz, 95W,1066FSB, 8MB); Memória			
	Cache 8MB L2 cache; Memoria 2GB			
	(1x2GB)PC2-6400 ECC (DDR2-800Mhz)			
	expansível até 8 GB; Controladora de Rede			
	NC105i PCIe Gigabit Ethernet; 1 HD 250GB			
	7.2K SATA Non Hot Plug 3,5" (expansível até			
	4 discos internos (1 TB)); Controladora para			
	RAID (0, 1); DRIVE SATA DVD-RW; Torre			
	ATX (4U); Teclado e Mouse inclusos; Garantia			
	de 1 ano no local.			
			TOTAL	23.124,00

^{*} Não há custo de aquisição, pois os terminais burros serão providos de reaproveitamento de equipamentos obsoletos.

A ideia de economia com monitores segue a mesma citada na Seção 3, pois fazer reaproveitamento de monitores CRT antigos não é viável por dois motivos principais: consumo de energia e desgaste do material, perdendo qualidade e podendo causar

desconforto ao usuário.

Os computadores obsoletos que a instituição possui, que em muitas das vezes são um fardo para qualquer empresa, podem ser reutilizados como *thin clients*. Os HDs e os *drives* como CD-ROM e disquete podem ser realocados, deixando apenas processador, memória RAM e placa mãe.

Os equipamentos a serem reaproveitados possuem a seguinte configuração: processador K6 II 500 Mhz, 64 MB RAM e rede 10/100 *onboard* (além do áudio e vídeo).

O TCO na aquisição de acordo com a proposta 2 gera uma economia na aquisição de equipamentos de R\$ 6.305,00, o que significa 21,43%.

A proposta 2 possui uma economia de TCO de aproximadamente 4.2 vezes maior que o TCO da proposta 1 e de aproximadamente 2,6 vezes maior que o TCO real da aquisição. (ver Gráfico 5)

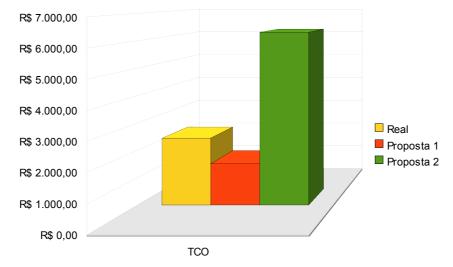


Gráfico 5. Economia de TCO das aquisições.

4.3 Análise das Propostas

Em termos de aquisição e cobertura do projeto, ou seja, atender as demandas da melhor maneira possível, a proposta 2 é a que melhor dá resultado. (ver Gráfico 6)

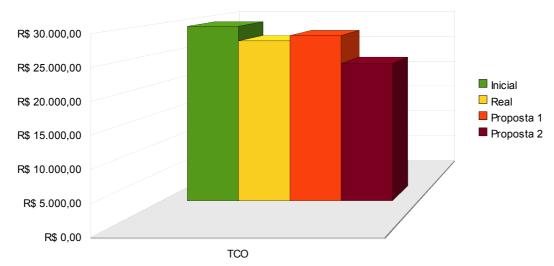


Gráfico 6. Resultado de TCO das aquisições.

Hoje, não é só economizar. Deve-se estar atentos a diversos fatores como o reaproveitamento de materiais obsoletos evitando a agressão ao meio ambiente fazendo descarte dos mesmos. O reuso não propôs apenas economia e boas práticas políticas. O fator principal é que se obtém R\$ 6.305,00 para reinvestir. O projeto prevê um necessidade muito alta de armazenamento de imagens e tráfego de rede. Assim pode-se redimensionar a economia para um investimento, ampliando as capacidades tecnológicas dentro do projeto.

1. Considerações Finais

TCO vai muito além de procurar as melhores soluções com preços mais acessíveis, cruzando realidade da empresa com suas demandas. Ele visa propor aos administradores e CIOs⁷ um panorama detalhado dos ativos que circundam a informação na empresa.

O CDH possui equipamentos de boa qualidade, porém o seu dimensionamento faz com que seus administradores procurem sempre adequar a demanda à solução. O correto seria adequar a solução à demanda evitando desperdícios e excessos, enxugando

⁷ Chief Information Officer – Pessoa responsável pela informação da empresa.

o TCO ao máximo.

Após um ano e meio de projeto em andamento, os equipamentos já necessitam de troca de peças e manutenções devido a degradação natural que as máquinas *fat client* possuem. Os *thin clients* possuem custo de manutenção menor, pois apenas o servidor é alvo de manutenção. Assim o TCO com terminais burros são menores durante o passar dos tempos, pois exigem menor quantidade de reparos e upgrades.

Além de *hardware* e *software*, um grande peso do TCO encontra-se no *peopleware*. O custo dos profissionais envolvidos são de grande importância e muitas vezes ignorado por administradores.

O presente estudo serve de base inicial para os administradores do CDH e da Instituição para que *a posteriori* seja direcionada uma análise mais profunda. A partir deste levantamento é possível traçar políticas para melhorias tecnológicas, com base em boas práticas de sustentabilidade financeira e melhor aproveitamento no investimento em infraestrutura de TI, além de servir de base para planejamentos de futuros projetos e controle de projetos atuais.

2. Referências Bibliográficas

ALMEIDA, K. D. M.; Borges, M. F.; Carvalho, C. V. A; LIMA JUNIOR, J. A. T. (2008). Total Cost Of Ownership TCO: Uma Ferramenta aplicável a todos os segmentos que utilizem TI: estudo de caso Centro de Documentação Histórica. In: Encontro de Iniciação Científica, v. 1. p. 1-1.

FEIMAN, J. (2009). GARTNER GROUP. **APPLICATION TCO MODEL: CATEGORIES AND ARCHITECTURES**. 4 maio 2009 http://www.gartner.com acessado em fev. 2009.

GARTNER GROUP. **IT value is the Balance of competing business goals. 1998**. http://www.gartner.com> acessado em mar. 2009.

MARKE, E. W. (2000). Total Cost of Ownership Analyses. 2000.

http://www.scribd.com/doc/3925278/A-guide-to-Total-Cost-of-Ownership-Analysis-TCO-2000> acessado em ago. 2009.